Меню

Закон Ома

Как говорится в среде радиолюбителей: «Если не знаешь закон Ома, то сиди-ка лучше дома».

Закон Ома с точки зрения гидравлики

Как вы уже знаете, электрический ток имеет аналогию с гидравликой. Напряжение — это уровень воды в башне. Сопротивление — это  труба или шланг. Сила тока — это объем воды за какой-то период времени.

Теперь давайте рассмотрим такой случай. Пусть вместо башни у нас будет сосуд с водой, в котором пробиты три одинаковых отверстия на разной высоте сосуда. Так как сосуд у нас наполнен водой, следовательно, на дне сосуда давление будет больше, чем на  его поверхности.

Закон Ома

Как вы видите, нижняя струя, которая находится ближе ко дну, стреляет дальше, чем средняя струя. А средняя струя стреляет дальше, чем верхняя.  Заметьте, что отверстия у нас везде  одинакового диаметра. То есть можно сказать, что сопротивление каждого отверстия воде одинаково. За одинаковое время, объем воды, вытекаемый с самого нижнего отверстия намного больше, чем объем воды, вытекаемый со среднего и самого верхнего отверстия. А что у нас такое объем воды  за какое-то время? Да это же сила тока!

Итак, какую закономерность мы тут видим? Учитывая, что сопротивление везде одинаковое, получается что с увеличением напряжения увеличивается и сила тока!

Опыт №1

Думаю, у каждого из вас есть садовый участок. Где-то недалеко от вас всегда есть водонапорная башня

Закон Ома

Для чего нужна водонапорная башня? Для контроля уровня расхода воды, а также для создания давления в трубах, иначе как вы  будете поливать свои огурцы? Вы никогда  не замечали, что башню возводят  где-нибудь на возвышенности? Для чего это делается? Как раз для того, чтобы создать давление.

Предположим, что ваш садовый участок находится выше, чем верхушка водобашни. Что произойдет в этом случае? Вода просто-напросто не дойдет до вас! Физика… закон сообщающихся сосудов.

У всех на кухне и в ванной есть краник. После очередного трудового дня вы решили помыть руки. Для этого вы на полную катушку включаете воду, и она начинает течь бурным потоком из краника:

Закон Ома

 

Но вас не устраивает такой поток воды, поэтому, покрутив ручку крана, вы уменьшаете поток воды на минимум:

Закон Ома

Что только что сейчас произошло?

Поменяв сопротивление потоку с помощью ручки краника, вы добились того, что этот поток воды стал течь очень слабо.

Давайте же проведем аналогию этой ситуации с электрическим током. Итак, что имеем? Напряжение потока мы не меняли. Где-то там вдалеке стоит водобашня и создает давление в трубах. Мы ведь не имеем права трогать водобашню, а тем более ее сносить). Поэтому уровень воды в башне все время полный, так как насос все время подкачивает воду до максимального уровня. Следовательно, напряжение у нас постоянное и не меняется.

Закрутив обратно ручку краника, мы  только что поменяли сопротивление трубы, из которой сделан краник. В данном случае мы увеличили сопротивление потоку воды. А что у нас получилось с потоком водички? Она стала бежать медленнее! То есть, можно сказать, что количество молекул воды за какое-то время при полностью открытом и полузакрытом кранике получилось разное. Ну-ка, вспоминаем, что такое сила тока ;-) Кто забыл, напомню — это количество электронов протекающих через поперечное сечение проводника за какой-то период времени. И что у нас стало с этой силой тока? Она уменьшилась!

Делаем вывод:

При увеличении сопротивления, сила тока, проходящая через это сопротивление, уменьшается.

Опыт N2

Итак. Имеем вот такую схему водоснабжения:

Закон Ома

 

Теперь представьте, что вы поливаете огород и вам  надо наполнить  бочку с водой из шланга за 10 минут. Ни секундой раньше и не позже! У вас в огороде поток воды бежит примерно вот так:

Закон Ома

Допустим, с водобашни у нас идет простой резиновый шланг. Сосед случайно припарковал свой автомобиль прямо на шланге и чуть-чуть придавил его

Закон Ома

У вас поток воды стал убывать. Идти ругаться с соседом? Он уже ушел по делам, а бочку за 10 минут  наполнить не успеете. Потребуется больше времени. Как же быть? А почему бы нам не открыть краник перед водобашней чуток побольше? А это хорошая идея! Открываем краник на полную катушку и добиваемся, чтобы уровень воды в башне стал еще больше, чем был до этого (хотя  в башнях стоят защиты от переполнения какого-либо максимального уровня, но для примера упустим этот момент).

Итак, что у нас получается? Сосед придавил шланг, значит увеличил сопротивление. Поэтому сила тока у нас стала меньше. Чтобы восстановить силу тока, мы для этого увеличивали напряжение, то есть уровень воды в башне.

Вывод: при увеличении напряжения увеличивается и сила тока.

Опыт №3

Но беда не приходит одна. На башне сломалось реле контроля водонасоса! Насос качает воду и не отключается! Башня переполняется и поток воды из шланга с каждой секундой становиться все больше и больше! Что же делать? Мы же переполним нашу бочку за отведенное нам время! Спокойствие, только спокойствие… Выход есть! Для этого бежим и чуток перекрываем краник , добиваясь того, чтобы поток воды из шланга тек также, как и раньше ;-)

В этом случае уровень воды (напряжение) на водобашне стал увеличиваться из-за того, что насос не отключался и все время качал воду. Поэтому, поток воды (сила тока) у нас тоже стала  расти. Чтобы выровнять силу тока, мы увеличили сопротивление краника ;-), тем самым привели в норму уровень воды в водобашне (напряжение) до приемлемого уровня.

Формула Закона Ома

Ну как, увидели закономерность из всего вышеописанного? А вот немецкий физик Георг Ом с помощью простых опытов нашел все-таки связь между этими тремя величинами и с тех пор этот закон носит его имя:

формула закон ома

где

I — это сила тока, выражается в Амперах (А)

U — напряжение, выражается в Вольтах (В)

R — сопротивление, выражается в Омах (Ом)

Заключение

Закон Ома является самым главным законом в электронике. Абсолютно вся теория цепей построена именно на законе Ома. Поэтому, чтобы научиться читать электрические схемы, вам очень важно знать, как связаны напряжение, сила тока и сопротивление на участке цепи. В этой статье мы с вами разобрали закон Ома для участка цепи, но есть еще закон Ома для полной цепи, о котором можно прочитать в этой статье.

Добавить комментарий

Ваш e-mail не будет опубликован.