Меню

Автоматический выключатель

Схема до ужаса простая и надежная, как лом:
Автоматический выключатель

Принцип работы такой: нажимая на кнопочку SB,  у нас сразу же включается лампа HL. Через некоторое время она гаснет.

В сборе на соплях у меня она выглядит приблизительно вот так:

Автоматический выключатель

Как вы видите, здесь я взял конденсатор в 10 000 мкФ.

Итак, как же работает данная схема? Нажимая один разочек на кнопочку SB c самовозвратом, что-то типа такой:

Автоматический выключатель

у нас почти мгновенно сразу же заряжается конденсатор. То есть после того, как мы единожды быстренько нажали кнопочку, у нас конденсатор сразу же превращается в источник питания, так как он накопил на себе заряд, который мы подавали с какой-либо батареи либо блока питания с напряжением +12 Вольт. 

Раз уж кондер накопил эти 12 Вольт на себе, то после отпускания кнопочки он будет разряжаться через цепь R—->база транзистора—>эмиттер—>минус. Транзистор  ведь тоже не дурак. Он сразу же чухнул, что у него напряжение на базе больше, чем 0,7 Вольт, и поспешил незамедлительно открыться, то есть сделал так, что сопротивление между коллектором и эмиттером стало очень маленькое.

Так как ДО включения схемы между коллектором и эмиттером транзистора была очень большое сопротивление (можно сказать обрыв), то ПОСЛЕ включения стало очень малым, поэтому по цепи +12 Вольт—->катушка электромагнитного реле—->коллектор——>эмиттер——>минус побежал электрический ток.

Пока ток бежал через катушку, она создала магнитное поле, которое в итоге притянуло железку с контактами, которые замкнулись между собой. Раз уж контакты замкнулись, лампочка оказалась включенной в сеть 220 Вольт и ярко засияла, источая лучи радости мне в глаза.

Читайте свойства магнитного поля.

С этим вроде бы понятно. Теперь вопрос такой… как долго будет находиться схема в рабочем состоянии? Все дело в том, что у нас заряд кондера не вечный. Это заряд разряжается  по цепи R—->база транзистора—>эмиттер—>минус, в результате чего конденсатор теряет свое напряжение. На базе транзистора напряжение стает все меньше и меньше, а следовательно и сила тока через базу стает меньше. Как вы помните, биполярный транзистор — это токовый радиоэлемент. Ток базы влияет на ток коллектора. Так как ток базы стает все меньше и меньше, следовательно, ток в цепи катушки тоже станет  уменьшаться.  И вот ток удержания катушки станет меньше, чем положено, и контакты реле разомкнутся. Раз тока нету, то и катушка перестанет притягивать железку с контактами. Контакты в цепи 220 Вольт разрываются и наша лампа тухнет. Сё! Ничего сложного и сверхъестественного в схеме нет.

В данной схеме значение емкости и  сопротивления  можно менять, для того, чтобы либо уменьшить, либо увеличить задержку выключения. Но также не забывайте, что большое значение сопротивления скажется на том, что транзистору просто-напросто не хватит напруги, чтобы открыться, поэтому сопротивления лучше брать в диапазоне от 100 Ом и до 5 КилоОм. То же самое касается и конденсатора. Меняя его значение, мы можем добиться увеличения или уменьшения времени задержки. То есть кондер и резистор в данной схеме создают RC-цепочку. Кто не помнит, что такое  RC — цепочка и для чего она нужна, то читайте эту статью.

Где же можно использовать схему? Например, при входе в погреб за маринованными огурчиками. Кнопочку нажали, огурчики взяли, и чтобы лишний раз груженным не нажимать на выключатель, вы просто ногой закрываете дверь и забываете про свет. Второй вариант для меня видится такой…  По идее не обязательно управлять лампочкой. Можно вместо нее поставить абсолютно любую нагрузку, например, вертушку. В туалет зашел, нагадил, и перед выходом нажал на кнопку, чтобы вертушка высосала весь испорченный воздух). Ну и еще один вариант на ум приходит такой: если у вас сломался таймер на микроволновке, а вы испокон веков греете только суп в банке, то почему бы не  встроить такой выключатель прямо в микроволновку? ;-)

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *