Основы цифровой электроники. Транзистор в роли инвертора

06.12.2016 19:13

Итак, давайте сразу ближе к делу. Рассмотрим вот такую простенькую схемку:

 

Что мы здесь видим? Видим ключ, резистор и источник питания. Резистор R мы повесили для того, чтобы не было короткого замыкания в источнике питания, когда замыкается ключ S. На клемму +U мы подаем плюс питания, а на землю, соответственно, минус. В схеме возможны два варианта развития событий: ключ замкнут и ключ разомкнут. Давайте рассмотрим каждый из этих двух вариантов:

 

1) Ключ замкнут

В результате в цепи +U-------> R-------> S -------> земля побежит электрический ток.

 

 

Будет ли в этом случае напряжение между клеммой "А" и землей?

Чешем свою репу и думаем... Так как ключ у нас замкнут, следовательно, в идеале его сопротивление 0 Ом. Вспоминаем закон Ома для участка цепи: I=U/R, отсюда U=IR. Получается, что падение напряжения на сопротивлении 0 Ом будет равно U=IR= I х 0 = 0 Вольт. Значит, напряжение между землей и клеммой "А" будет 0 Вольт. Получается, что напряжения на клемме "А" не будет.

 

 

2) Ключ разомкнут.

Что  в результате у нас будет на клемме "А"? Давайте также посчитаем по закону Ома. Мы знаем, что электрический ток бежит от плюса к минусу. Но так как у нас минус вообще не при делах, так как цепь разорвана ключом, следовательно,  сила тока  в цепи +U------->R------->клемма "А" будет равняться 0 Ампер. Значит, падение напряжения на резисторе R будет равняться U=IR=0 х R = 0 Вольт. Получается, что все полноценные +U Вольт доходят до клеммы "A". Поэтому, на клемме "А" будет напряжение +U.

 

 

А почему бы нам не заменить ключ S транзисторным ключом? Вводя транзистор в режим насыщения или отсечки, мы можем управлять сопротивлением между коллектором и эмиттером.

 

 

Следовательно, в режиме отсечки схема примет вот такой вид:

 

 

а в режиме насыщения вот такой:

Хотя, если честно, падение напряжения в этом случае на коллекторе-эмиттере будет составлять доли Вольт, что на самом деле не критично.

 

 

Как мы видим, ключ на транзисторе у нас имеет Вход и Выход:

Допустим, мы на Вход не подаем никакого сигнала. Что будет на Выходе? Не подавая никакого сигнала на базу транзистора через резистор R1, в данном случае на Вход, у нас транзистор НЕ откроется и ключ будет разомкнут (как вы помните, для открытия мы должны подать на базу более 0,6-0,7 Вольт), поэтому на Выходе  (клемма "А" ) у нас будет +U Вольт

 

 

 

Но если правильно рассчитать резистор R1 и подать сигнал, значение напряжения которого будет больше, чем 0,6-0,7 Вольт, то у нас транзистор войдет в режим насыщения и ключ будет замкнут

В этом случае на Выходе (на клемме "А") у нас будет напряжение близкое к нулю.

 

Итак, что получаем? Подаем сигнал и имеем на выходе 0 Вольт, если НЕ подаем сигнал - имеем +U.

Такая схема в народе называется инвертором.

 

- Закрой окно.
- Я не расслышала, закрыть окно или открыть?
- Инвертируй!

 

 

Если за входной сигнал и +U взять напряжение, допустим, в 5 Вольт, и договориться, что значение напряжения близкое к 5 Вольтам принять за логическую единичку, а напряжение близкое к нулю принять за логический ноль, то можно вывести самую простую закономерность:

- подаем логическую единичку на вход, получаем логический ноль на выходе

- подаем логический ноль на вход, получаем логическую единичку на выходе

 

На осциллограмме все это будет выглядеть вот так:

 

Также в цифровой электронике есть такое понятие, как таблица истинности, которая показывает значение Выходов каких-либо логических элементов со всеми возможными комбинациями на Входе. Для нашего инвертора таблица истинности примет вот такой вид:

 

 

Ладно, харэ трепать языком. Перейдем ближе к делу.

Давайте построим инвертор на транзисторе КТ815Б, рассчитаем его и испытаем. +U возьмем 5 Вольт. На Вход также будем подавать управляющий сигнал в 5 Вольт.  Вся схема  у нас будет вот такая:

Как мы уже сказали, резистор R2 будет ограничивать силу тока в цепи +5 Вольт -------> R2-------> коллектор-------> эмиттер-------> земля, когда транзистор будет полностью открыт, то есть будет находиться в режиме насыщения.  Также R2 будет задавать силу тока через нагрузку в режиме отсечки, которую мы цепанем на Выход схемы. В принципе, резистора Ом на 500 вполне хватит, чтобы в цепи +U------->R2------->коллектор------->эмиттер------->земля в режиме насыщения протекал ток силой в 10 миллиАмпер (I=U/R= 5 В / 500 Ом = 10 мА)

 

Дело за малым. Надо рассчитать резистор R1. Для этого щелкаем на статью работа транзистора в режиме ключа, и берем из этой статьи формулы для расчета резистора R1.

 

Для начала рассчитываем базовый ток по формуле:

где

IБ - это базовый ток, в Амперах

kнас  - коэффициент насыщения. В основном берут в диапазоне от 2-5. Он уже зависит от того, насколько глубоко вы хотите вогнать ваш транзистор в насыщение. Чем больше коэффициент, тем больше режим насыщения.

I- коллекторный ток, в Амперах

β - коэффициент усиления тока транзистора, для расчетов берут минимальное значение в даташите или замеряют на практике

 

С помощью своего китайского транзистор-тестера я без труда замеряю β . Здесь он обозначается как hFE.



 

Теперь kнас берем 3, так как у нас будет типа переключающая схема. Iк у нас 10 миллиАмпер, это значение мы высчитывали выше. Считаем базовый ток:

Iб = (3 х 0,01) / 78 = 3,84 х 10-4 А

Так как управляющее напряжение у нас будет 5 Вольт, применяем закон Ома:

Iб = U/R1

R1 = U/Iб = 5 / 3,84 х 10-4 =1,3 х 104 Ом. Берем ближайший из ряда на 12 КилоОм.

 

Следовательно, схема будет с такими параметрами:

 

 

Вот так она выглядит на макетной плате:

 

 

Давайте вместо нагрузки подцепим светодиод. Когда я НЕ подаю 5 Вольт на Вход, светодиод светится:

 

 

Когда беру 5 Вольт с другого блока питания и подаю на Вход схемы, то светодиод тухнет:

Как мы видим, схема работает.

 

 

Ну а теперь момент истины, смотрим осциллограммы.  Желтый - входной сигнал амплитудой в 5 Вольт с китайского генератора частоты, а красный  - выходной сигнал:

Подали прямоугольный сигнал в 5 Вольт и с частотой в 7 КилоГерц, вышел прямоугольный сигнал в 5 Вольт 7 КилоГерц. Выйти-то он вышел, но обратите внимание на то, что его фаза абсолютно противоположна фазе входного сигнала. Если взять 5 Вольт за логическую единичку, а 0 Вольт за логический ноль, то у нас получается, что загоняя единичку на вход, получаем ноль на выходе, и наоборот, загоняя ноль на вход, получаем единичку на выходе. Инвертор во всей своей красе ;-)

 

 

Все, конечно, замечательно, но и здесь есть свои подводные камни. Дело все в том, что транзистор не может сразу быстро выключаться. Проблема заключается в физическом строении самого биполярного транзистора. Для выключения ему требуется некоторое время. В медленно переключающих схемах это не имеет значения, а вот схемы, которые работают на высоких частотах, уже будут иметь искажения. Вот осциллограмма выходного красного сигнала на частоте в 50 КилоГерц :

 

 

А вот на частоте в 100 КилоГерц:

Как видите, сигнал очень сильно искажается. Как же с этим бороться? Можно спроектировать ключ так, чтобы он переключался чуть выше границы насыщения. В этом случае коэффициент насыщения должен быть равен хотя бы единице. Но в этом случае у нас будет падать бОльшее напряжение между коллектором и эмиттером, что приведет к нагреву транзистора и лишним энергозатратам. Второй вариант, использовать полевые транзисторы. Их еще называют МОП-транзисторы. Характеристики у МОПов намного лучше  и энергозатраты на переключение даже меньше, чем у биполяров. Поэтому в основном сейчас везде применяются МОП-транзисторы в роли ключей. Ну и самый пик моды - это IGBT-транзисторы. Может быть мы когда-нибудь дойдем и до них...

 

Читайте также:

Биполярный транзистор. Коэффициент Бета

 

Биполярный транзистор. Работа в режиме ключа

 

Основы цифровой электроники. Введение