Читаем электрические схемы. Нагрузка, работа и мощность

07.09.2017 21:27

Ну что, продолжим дальше?

 

Начнем с самой простой схемы фонарика и от нее уже будет отталкиваться

 

Здесь мы видим три радиоэлемента: источник питания Bat, выключатель S и кругляшок с крестиком внутри, то есть лампочку. Все это вместе называется электрической цепью. Так как по цепи не бежит электрический ток, то такую цепь называют разомкнутой.

 

Но стоит нам щелкнуть выключатель, и у нас тут же загорится лампочка. Такая цепь уже будет называться замкнутой.

 

Теперь давайте подробнее разберем нашу схему.  Немного развернем ее в пространстве для удобства, игнорируя ГОСТ по обозначению источника питания:

Как мы помним с прошлой статьи, электрический ток бежит от точки с бОльшим потенциалом, то есть от плюса, к точке с мЕньшим потенциалом, то есть к минусу. Или говоря простым языком: от плюса к минусу. В настоящий момент у нас выключатель разомкнут. Можно сказать, что мы "оборвали" нашу цепь выключателем. В среде электриков и электронщиков говорят, что цепь " в обрыве". Ток не бежит, лампочка не горит.

 

Но вот мы ловким движением руки щелкаем выключатель и у нас цепь замыкается:

 

Дорога для электрического тока открыта, и он течет от плюса к минусу через лампочку накаливания, которая начинает ярко светиться.

 

 

Вроде бы все понятно, но не совсем. Кто или что заставляет светиться лампочку? Мало того, что она светит, она еще и греет!

 

 

Что самое первое появилось во Вселенной? Говорят, что время, хотя я думаю, что энергия). Энергия ниоткуда просто так не берется и никуда просто так не исчезает. Это и есть закон сохранения энергии, так что "побрейтесь" фаны вечных двигателей).

 

В данном опыте у нас лампочка светит и греет. Получается, что лампочка излучает и тепловую и световую энергию. Вы ведь не забыли, что световые лучи передают энергию? В быту, например, мы используем солнечные панели, чтобы из лучиков получить электрический ток.

 

Но теперь вопрос такой. Если лампочка излучает световую и тепловую энергию, то откуда она ее получает? Разумеется, от источника питания. Фраза "источник питания" уже говорит сама за себя. Берет энергию наша лампочка прямо от источника питания через проводкИ. Энергия, которая течет через проводочки, называется электроэнергией.

 

А откуда берет электроэнергию источник питания? Здесь уже есть разные способы добычи электроэнергии. Это может быть падающий поток воды, который крутит мощные лопасти вертушки, которая работает как генератор. Это могут быть химические реакции в батарейках и акумах. Это может быть даже солнечная панелька или вообще какой-нибудь элемент, типа Пельтье, который может вырабатывать электрический ток под действием разности температур. Способов много, а эффект один. Сделать так, чтобы появилась ЭДС.

 

Какие же процессы происходят в это время в проводках и что случается с электрическим током? Как он себя ведет?

В дело идет Закон Ома. Как я уже писал, это самый значимый закон во всей электронике. Что такое по сути лампочка? Это вольфрамовый проводок в стеклянной колбе с вакуумом. Вольфрам - это металл, следовательно, он может через себя проводить электрический ток. Но весь прикол в том, что при определенном напряжении он  раскаляется и начинает светиться. То есть отдавать энергию в пространство в виде тепла и излучения. В холодном состоянии вольфрамовая нить обладает меньшим сопротивлением, чем в раскаленном, более чем в десять раз. Следовательно, лампочка - это просто как сопротивление для электрической цепи. В этой статье я взял лампочку, чтобы визуально показать нагрузку. Нагрузка - от слова "нагружать". Источнику питания не нравится, когда ему приходится отдавать электроэнергию. Он любит работать без нагрузки ;-)

 

 

Теперь давайте представим все это с точки зрения гидравлики и механики.

Имеем трубу, по которой бурным поток течет вода. К трубе приделана вертушка, типа водяного колеса. Лопасти вертушки крутят вал.

Рисунок я чертил по всем догмам черчения: главный вид, и справа его разрез.

 

Если к валу ничего не цепляется, то поток воды бурно бежит по трубе и крутит колесо, а оно в свою очередь крутит вал. Такой режим можно назвать холостым режимом работы водяного колеса, то есть режимом без нагрузки.

Но что будет, если мы начнем использовать вращение вала себе во благо? Например, соединим с помощью муфты вал водяного колеса с валом мини-мельницы?

Думаю, многие из моих читателей сразу догадаются, что водяное колесо начнет притормаживать, так как мы его заставили работать. Крутиться со скоростью холостого хода у нашего вала уже не получится. Скорость будет меньше. То есть в нашем случае у нас на валу есть нагрузка. Что же будет происходить с потоком воды в трубе? Он будет тормозиться, так как лопасти вала не дадут водичке спокойно бежать по трубе. Поэтому, общий поток воды в трубе будет меньше, чем ДО холостого хода вала.

 

А если нагрузить вал, чтобы тот поднимал  грузовой лифт?

Думаю, вся конструкция тут же встанет колом. То есть большая нагрузка станет непосильна для вала. А если бы мы сделали лопасти вертушки такие, чтобы они полностью перекрывали диаметр трубы, то поток жидкости вообще бы остановился.

 

 

Давайте разберем еще один пример для понимания. Все тот же самый рисунок:

 

 

Предположим, что мы прицепили к валу наждак, а электродвижок убрали с этой конструкции. И вот мы решили что-нибудь шлифануть.

 

Итак, что у нас в результате получается? Если мы будем слабо давить на шлифовальный круг, то у нас круг начнет притормаживаться и уже  будет крутиться с другой скоростью. Если мы сильнее будем давить на круг, то скорость вала еще больше упадет. Если же мощность нашего вала слабовата, мы можем добиться того, что при сильном давлении на круг вообще остановить вал. Тогда и точиться ничего не будет...

 

 

Давайте снова вернемся к мини-мельнице

Что будет если поток воды в трубе увеличить в несколько  раз? Мельница будет крутиться так, что ее порвет нахрен! А  если поток воды в трубе будет очень слабый? Разумеется, мельница будет молоть одно-два зернышка в час. Хотя, опять же, с большим потоком воды мы вполне можем поднять лифт.

 

Понимаете к чему я веду? Все завязано друг с другом! Давление в трубе, скорость потока жидкости и нагрузка... Все они связаны воедино.

 

 

Перейдем к электронике.

Для того, чтобы это показать что к чему, мы возьмем две лампы на 12 Вольт, но разной мощности. На блоке питания выставляю также 12 Вольт и собираю все это дело по схеме, которая мелькала в начале статьи

 

 

Мой блок питания может выдать в нагрузку 150 Ватт, не парясь. Беру лампочку от мопеда и цепляю ее к блоку питания

 

 

Смотрим потребление тока. 0,71 Ампер

Высчитываем сопротивление раскаленной нити лампочки из закона Ома I=U/R, отсюда R=U/I=12/0,71=16,9 Ом.

 

 

Беру галогеновую лампу от фары авто и также цепляю ее к блоку питания

 

 

Смотрим потребление. 4,42 Ампера

Аналогично высчитываем сопротивление нити лампы. R=U/I=12/4,42=2,7 Ом.

 

А теперь давайте посчитаем, какая лампочка больше всех Ватт "отбирает"  у источника питания. Вспоминаем школьную формулу P=UI. Итак, для маленькой лампочки мощность составит P=12x0,71=8,52 Ватта. А для большой лампочки мощность  будет Р=12х4,42=53 Ватта. Ого! У нас получилось, что лампочка, которая обладала меньшим сопротивлением, на самом деле очень даже прожорливая.

 

Итак, если кто не помнит, что такое мощность, могу напомнить. Мощность - это отношение какой-то полезной работы к времени, в течение которого эта работа совершалась. Например, надо вскопать яму определенных размеров. Вы с лопатой, а ваш друг - на экскаваторе:

Кто быстрее справится  с задачей за  одинаковый промежуток времени? Разумеется экскаватор. В этом случае, можно сказать, что его мощность намного больше, чем мощность человека с лопатой.

 

А теперь представьте, что нам надо полностью под ноль сточить эту железяку:

Подумайте вот над таким вопросом... У нас есть в запасе 5 мин и нам надо сточить железяку по-максимому. В каком случае железяка сточится быстрее всего: если прижимать ее к абразивному кругу со всей дури, прижимать слегка, либо прижимать в полсилы? Не забывайте, что у нас абразивный круг подцеплен к валу, который крутит поток воды в трубе. И да, труба у нас небольшого диаметра.

 

 

Кто ответил, что если прижимать в полсилы, то оказался прав. Железяка в этом случае сточится быстрее.  Если прижимать ее со всей дури, то можно вообще остановить круг. Еще раз, что у нас такое мощность? Полезная работа, совершаемая за какой-то промежуток времени. А в нашем опыте полезная работа это и есть стачивание железяки по максималке. Также не забывайте и  тот момент, что если мы будем слегка прижимать железяку, то мы будем ее стачивать пол дня. Поэтому, золотая середина  - это давить железяку в полсилы.

 

Ну вот мы и снова переходим к электронике ;-)

Поток воды - сила тока, давление в трубе - напряжение, давление железяки на круг - сопротивление.  И что в результате мы получили? А то, что лампочка с меньшим сопротивлением обладает большей мощностью, чем лампочка с большим сопротивлением. Не трудно догадаться, если просто посмотреть на фото, но вживую эффект лучше

 

Но обязательно ли то, что чем меньше сопротивление, тем больше мощности выделяется на нагрузке? Конечно же нет. Во всем нужен расчет, как  и в прошлом опыте, где мы стачивали железяку за определенное время.

 

И еще один фактор, конечно, тоже надо учитывать. Это давление в трубе. Прикиньте, точим-точим мы железяку, и вдруг давление в трубе стало повышаться. Может быть переполнилась башня, или кто-то открыл краник на полную катушку. Что станет с наждаком? Его обороты ускорятся,  так как сила потока воды в трубе увеличится,  а следовательно, мы еще быстрее сточим нашу железку.

 

Поэтому формулы мощности в электронике имеют вот такой вид:

где,

А - это полезная работа, Джоули

t  - время,  секунды

U - напряжение, Вольты

I - сила тока, Амперы

P - собственно сама мощность, Ватты

R - сопротивление, Омы

 

Как вы можете заметить, формула P=I2 R говорит нам о том, что не всегда на маленьком сопротивлении вырабатывается большая мощность и то, что мощность очень сильно зависит от силы тока. А как поднять силу тока? Добавить напряжения ;-). Закон Ома работает всегда и везде.

 

А из формулы P=U2/R, можно увидеть, что чем меньше сопротивление и больше напряжение в цепи, тем больше мощность будет выделяться на нагрузке. А что такое выделение мощности на нагрузке? Это может быть тепло, свет, какая-либо механическая работа и тд. Короче говоря, выработка какой-либо полезной энергии для наших нужд.

 

 

Резюме

Нагрузкой  в электрической цепи называют какой-либо электрический прибор, который потребляет электрическую энергию.

 

Электрическая энергия требуется для того, чтобы совершать какую-либо полезную работу (смотреть телек, зависать в интернете, охлаждать пивас  в холодильнике и тд.)

 

Полезная работа за какой-то определенный промежуток времени называется мощностью.

 

Мощность нагрузки зависит от таких факторов, как сопротивление нагрузки на электрическую цепь, напряжение в цепи, а также сила тока в цепи.

 

Цепь, которая не имеет какой-либо нагрузки, либо имеет нагрузку с бесконечно большим сопротивлением, называется разомкнутой либо "в обрыве".

 

Читайте также:

 

Работа и мощность постоянного тока

 

 Короткое замыкание

 

Пару слов о проводах